支持四代酷睿的主板,什么芯片支持4代电脑系统
1.Intel 4代CPU+不带加密模块TPM2.0绕过限制装Windows 11
2.电脑用那种CPU好
3.电脑升级,你需要知道的事情
4.现在主板上面主要集成的芯片有哪些
5.想做个嵌入式Linux板子玩玩,推荐用什么芯片?
CPU是Central Processing Unit(中央微处理器)的缩写,它是计算机中最重要的一个部分,由运算器和控制器组成。如果把计算机比作人,那么CPU就是人的大脑。CPU的发展非常迅速,个人电脑从8088(XT)发展到现在的Pentium 4时代,只经过了不到二十年的时间。
从生产技术来说,最初的8088集成了29000个晶体管,而PentiumⅢ的集成度超过了2810万个晶体管;CPU的运行速度,以MIPS(百万个指令每秒)为单位,8088是0.75MIPS,到高能奔腾时已超过了1000MIPS。不管什么样的CPU,其内部结构归纳起来都可以分为控制单元、逻辑单元和存储单元三大部分,这三个部分相互协调,对命令和数据进行分析、判断、运算并控制计算机各部分协调工作。
CPU从最初发展至今已经有二十多年的历史了,这期间,按照其处理信息的字长,CPU可以分为:4位微处理器、8位微处理器、16位微处理器、32位微处理器以及正在酝酿构建的64位微处理器,可以说个人电脑的发展是随着CPU的发展而前进的。
Intel 4004
1971年,英特尔公司推出了世界上第一款微处理器4004,这是第一个可用于微型计算机的四位微处理器,它包含2300个晶体管。随后英特尔又推出了8008,由于运算性能很差,其市场反应十分不理想。1974年,8008发展成8080,成为第二代微处理器。8080作为代替电子逻辑电路的器件被用于各种应用电路和设备中,如果没有微处理器,这些应用就无法实现。
由于微处理器可用来完成很多以前需要用较大设备完成的计算任务,价格又便宜,于是各半导体公司开始竞相生产微处理器芯片。Zilog公司生产了8080的增强型Z80,摩托罗拉公司生产了6800,英特尔公司于1976年又生产了增强型8085,但这些芯片基本没有改变8080的基本特点,都属于第二代微处理器。它们均采用NMOS工艺,集成度约9000只晶体管,平均指令执行时间为1μS~2μS,采用汇编语言、BASIC、Fortran编程,使用单用户操作系统。
Intel 8086
1978年英特尔公司生产的8086是第一个16位的微处理器。很快Zilog公司和摩托罗拉公司也宣布计划生产Z8000和68000。这就是第三代微处理器的起点。
8086微处理器最高主频速度为8MHz,具有16位数据通道,内存寻址能力为1MB。同时英特尔还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算的指令。人们将这些指令集统一称之为 x86指令集。虽然以后英特尔又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的x86指令,而且英特尔在后续CPU的命名上沿用了原先的x86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。
1979年,英特尔公司又开发出了8088。8086和8088在芯片内部均采用16位数据传输,所以都称为16位微处理器,但8086每周期能传送或接收16位数据,而8088每周期只采用8位。因为最初的大部分设备和芯片是8位的,而8088的外部8位数据传送、接收能与这些设备相兼容。8088采用40针的DIP封装,工作频率为6.66MHz、7.16MHz或8MHz,微处理器集成了大约29000个晶体管。
8086和8088问世后不久,英特尔公司就开始对他们进行改进,他们将更多功能集成在芯片上,这样就诞生了80186和80188。这两款微处理器内部均以16位工作,在外部输入输出上80186采用16位,而80188和8088一样是采用8位工作。
1981年,美国IBM公司将8088芯片用于其研制的PC机中,从而开创了全新的微机时代。也正是从8088开始,个人电脑(PC)的概念开始在全世界范围内发展起来。从8088应用到IBM PC机上开始,个人电脑真正走进了人们的工作和生活之中,它也标志着一个新时代的开始。
Intel 80286
1982年,英特尔公司在8086的基础上,研制出了80286微处理器,该微处理器的最大主频为20MHz,内、外部数据传输均为16位,使用24位内存储器的寻址,内存寻址能力为16MB。80286可工作于两种方式,一种叫实模式,另一种叫保护方式。
在实模式下,微处理器可以访问的内存总量限制在1兆字节;而在保护方式之下,80286可直接访问16兆字节的内存。此外,80286工作在保护方式之下,可以保护操作系统,使之不像实模式或8086等不受保护的微处理器那样,在遇到异常应用时会使系统停机。
IBM公司将80286微处理器用在先进技术微机即AT机中,引起了极大的轰动。80286在以下四个方面比它的前辈有显著的改进:支持更大的内存;能够模拟内存空间;能同时运行多个任务;提高了处理速度。最早PC机的速度是4MHz,第一台基于80286的AT机运行速度为6MHz至8MHz,一些制造商还自行提高速度,使80286达到了20MHz,这意味着性能上有了重大的进步。
80286的封装是一种被称为PGA的正方形包装。PGA是源于PLCC的便宜封装,它有一块内部和外部固体插脚,在这个封装中,80286集成了大约130000个晶体管。
IBM PC/AT微机的总线保持了XT的三层总线结构,并增加了高低位字节总线驱动器转换逻辑和高位字节总线。与XT机一样,CPU也是焊接在主板上的。
那时的原装机仅指IBM PC机,而兼容机就是除了IBM PC以外的其它机器。在当时,生产CPU的公司除英特尔外,还有AMD及西门子公司等,而人们对自己电脑用的什么CPU也不关心,因为AMD等公司生产的CPU几乎同英特尔的一样,直到486时代人们才关心起自己的CPU来。
8086~80286这个时代是个人电脑起步的时代,当时在国内使用甚至见到过PC机的人很少,它在人们心中是一个神秘的东西。到九十年代初,国内才开始普及计算机。
Intel 80386
1985年春天的时候,英特尔公司已经成为了第一流的芯片公司,它决心全力开发新一代的32位核心的CPU—80386。Intel给80386设计了三个技术要点:使用“类286”结构,开发80387微处理器增强浮点运算能力,开发高速缓存解决内存速度瓶颈。
1985年10月17日,英特尔划时代的产品——80386DX正式发布了,其内部包含27.5万个晶体管,时钟频率为12.5MHz,后逐步提高到20MHz、25MHz、33MHz,最后还有少量的40MHz产品。
80386DX的内部和外部数据总线是32位,地址总线也是32位,可以寻址到4GB内存,并可以管理64TB的虚拟存储空间。它的运算模式除了具有实模式和保护模式以外,还增加了一种“虚拟86”的工作方式,可以通过同时模拟多个8086微处理器来提供多任务能力。
80386DX有比80286更多的指令,频率为12.5MHz的80386每秒钟可执行6百万条指令,比频率为16MHz的80286快2.2倍。80386最经典的产品为80386DX-33MHz,一般我们说的80386就是指它。
由于32位微处理器的强大运算能力,PC的应用扩展到很多的领域,如商业办公和计算、工程设计和计算、数据中心、个人。80386使32位CPU成为了PC工业的标准。
虽然当时80386没有完善和强大的浮点运算单元,但配上80387协处理器,80386就可以顺利完成许多需要大量浮点运算的任务,从而顺利进入了主流的商用电脑市场。另外,30386还有其他丰富的外围配件支持,如82258(DMA控制器)、8259A(中断控制器)、8272(磁盘控制器)、82385(Cache控制器)、82062(硬盘控制器)等。针对内存的速度瓶颈,英特尔为80386设计了高速缓存(Cache),采取预读内存的方法来缓解这个速度瓶颈,从此以后,Cache就和CPU成为了如影随形的东西。
Intel 80387/80287
严格地说,80387并不是一块真正意义上的CPU,而是配合80386DX的协处理芯片,也就是说,80387只能协助80386完成浮点运算方面的功能,功能很单一。
Intel 80386SX
1989年英特尔公司又推出准32位微处理器芯片80386SX。这是Intel为了扩大市场份额而推出的一种较便宜的普及型CPU,它的内部数据总线为32位,外部数据总线为16位,它可以接受为80286开发的16位输入/输出接口芯片,降低整机成本。
80386SX推出后,受到市场的广泛的欢迎,因为80386SX的性能大大优于80286,而价格只是80386的三分之一。
Intel 80386SL/80386DL
英特尔在1990年推出了专门用于笔记本电脑的80386SL和80386DL两种型号的386芯片。这两个类型的芯片可以说是80386DX/SX的节能型,其中,80386DL是基于80386DX内核,而80386SL是基于80386SX内核的。这两种类型的芯片,不但耗电少,而且具有电源管理功能,在CPU不工作的时候,自动切断电源供应。
Motorola 68000
Intel 4代CPU+不带加密模块TPM2.0绕过限制装Windows 11
1、第一代计算机(1946~1958)
电子管为基本电子器件;使用机器语言和汇编语言;主要应用于国防和科学计算;运算速度每秒几千次至几万次。
计算机主要用于科学计算。主存储器是决定计算机技术面貌的主要因素。当时,主存储器有水银延迟线存储器、阴极射线示波管静电存储器、磁鼓和磁心存储器等类型,通常按此对计算机进行分类
2、第二代计算机(1958~1964)
晶体管为主要器件;软件上出现了操作系统和算法语言;运算速度每秒几万次至几十万次。
主存储器均采用磁心存储器,磁鼓和磁盘开始用作主要的辅助存储器。不仅科学计算用计算机继续发展,而且中、小型计算机,特别是廉价的小型数据处理用计算机开始大量生产。
3、第三代计算机(1964~1971)
普遍采用集成电路;体积缩小;运算速度每秒几十万次至几百万次。
在集成电路计算机发展的同时,计算机也进入了产品系列化的发展时期。半导体存储器逐步取代了磁心存储器的主存储器地位,磁盘成了不可缺少的辅助存储器,并且开始普遍采用虚拟存储技术。随着各种半导体只读存储器和可改写的只读存储器的迅速发展,以及微程序技术的发展和应用,计算机系统中开始出现固件子系统
4、第四代计算机(1971~至今 )
新一代计算机是把信息采集存储处理、通信和人工智能结合在一起的智能计算机系统。它不仅能进行一般信息处理,而且能面向知识处理,具有形式化推理、联想、学习和解释的能力,将能帮助人类开拓未知的领域和获得新的知识。
以大规模集成电路为主要器件;运算速度每秒几百万次至上亿次。
扩展资料
第四代计算机出现与发展
将CPU浓缩在一块芯片上的微型机的出现与发展,掀起了计算机大普及的浪潮。1969年,英特尔(Intel)公司受托设计一种计算器所用的整套电路,公司的一名年轻工程师费金(Federico Fagin)成功地在4.2×3.2的硅片上,集成了2250个晶体管。
这就是第一个微处理器——Intel 4004。它是4位的。在它之后,1972年初又诞生了8位微处理器Intel 8008。1973年出现了第二代微处理器(8位),如Intel 8080(1973)、M6800(1975,M代表摩托罗拉公司)、Z80(1976,Z代表齐洛格公司)等。
1978年出现了第三代微处理器(16位),如Intel 8086、Z8000、M68000等。1981年出现了第四代微处理器(32位),如iAPX432、i80386、MAC-32、NS-16032、Z80000、HP-32等。
它们的性能都与七十年代大中型计算机大致相匹敌。微处理器的两三年就换一代的速度,是任何技术也不能比拟的。
百度百科-第四代电子计算机
电脑用那种CPU好
本内容来源于@什么值得买APP,观点仅代表作者本人 作者:我是四海飘零
在发布会场微软的一位高管说过一段话:“Windows 10将会是最后一个Windows 系统。”微软在2015年就宣布Win10将是最后一个Windows。没想到6年后那位微软高管也离职了,微软随后没多久就宣布新的Win 11系统也要来了。
微软官方要求升级到Win11的硬件要求:
1、Intel 8代(包含)以后的CPU、AMD 锐龙2000系列(包含)之后的CPU。
2、必须硬件支持TPM2.0芯片。
3、4GB内存和64GB存储空间。
1、下载Dev频道的Windows 11系统镜像文件。目前版本号为:22000.51.210617-2050.CO。
镜像文件名的全称:22000.51.210617-2050.CO_RELEASE_SVC_PROD2_CLIENTPRO_OEMRET_X64FRE_ZH-CN,镜像文件大小:4.33GB。
2、Win11 ISO镜像文件解压后直接在sources文件夹下删除appraiserres.dll该dll文件。
3、在Windows 10系统下直接双击运行Setup.exe即可进入安装界面。
4、在Windows 10系统下升级安装Windows 11系统必须在断网的情况下选第二项,不然在联网的情况下会检测电脑的硬件,如果不满足直接闪退无反应。要是满足硬件需求的情况下可以选第一项。
5、在断网的情况下会显示获取更新,由于删除了appraiserres.dll该dll文件后会有个检查更新的进度条,等走完后继续下一页即可。
6、既然是升级Windows 11系统,建议保留个人文件和应用。也便于后期回退到Windows 10系统。如果不需要保留就选“无”即可。
7、等待升级安装完成,取决于电脑硬件配置。我这用的是Intel 4代CPU和机械硬盘来装系统,耗时会比较久。用SSD的话会加载安装更快一些。
8、升级完系统后可以用CMD命令输入:winver,弹窗出来即可看到是否升级到了Windows 11系统。
我的电脑(此电脑)的界面跟Win10区别不大,唯一的变化就是icon变好看了。
居中的“Windows开始菜单”还是挺别具一格的,整体感觉更像借鉴了macOS系统,从Windows 11系统开始微软放弃了多年的Metro动态磁贴的设计。
消息通知中心没啥太大的变化,原先Win10不透明的纯色效果换成了透明的半朦胧效果,更接近当年Windows Vista、Windows 7系统上的Aero效果(透明玻璃感,毛玻璃透明特效),也算是在Windows 11系统上的一个回归吧。
就我手里的这台电脑硬件配置肯定不符合微软官方升级Win11的要求,一个是CPU不满足8代(包含)之后的要求,另一个就是主板不带TPM2.0硬件模块。但是绕过硬件需求之后安装了Win11运行还是挺正常的,至少没有出现过升级Win10系统时的蓝屏情况。
天气App的界面也换面貌了。
Win11自带的计算器也与时俱进,支持单位计量的转换器,也支持在线实时汇率的货币换算。这相对于Win10上的计算器来说是一个较为明显的使用体验改善。
可以选择任务栏的对齐方式,默认是任务栏设置为居中。为了照顾用户的操作习惯,也支持手动修改任务栏设置为靠左。
UI界面的颜色支持浅色和深色,默认的应用模式可以选择亮和暗。我个人认为浅色和亮应用模式要更美观更好看一些。强烈建议开启透明效果,可以找回拥Win 7系统下Aero(毛玻璃透明特效)体验。
Win 11系统多任务处理(分屏功能)的确是好用,以往在Wi 10系统下两个应用需要自己调节,在Win 11系统下就可以自动分屏对齐了。
等待正式版的到来可以体验跨设备共享了,看来老“田”是铁了心要抢占推广类似鸿蒙系统这样的多屏协同功能啊。
如果对Dev版的Win 11系统玩腻了想回退Win 10系统进恢复界面就可以操作了。
微软应用商店也换了全新的界面,看上去更美观了。
之前在Windows Vista和Windows 7系统上可以添加插件的功能又回来了,看来又多了一个玩法了。
Intel i5 4460T处理器的资源使用率情况。
8GB内存的资源使用率情况,使用中3.4GB,可用4.4GB。看来4GB真的是最低的入门要求了,8GB只能说刚刚够用,看来16GB很快会普及的,32GB在向你招手
。
实测机械硬盘(HDD)也是够用的,换成固态硬盘(SSD)后系统体验会更好。
实测NVIDIA GeForce 800M的独立显卡也是够用的。
这次升级到Dev版的Win 11系统后我个人是感到非常满意的,彻底有效解决了当年从Win 7系统升级到Win 10系统出现过卡死、一直转圈无法进入蓝屏的“噩梦”的问题,据说从Win 11开始微软不再将驱动放在系统文件目录内了,也就是更新系统不会出现系统奔溃导致的蓝屏情况。
电脑升级,你需要知道的事情
看你主要做什么用的了,玩游戏推荐用AMD的,办公的话用Intel的比较好.
AMD的U更适合运行游戏,因而更受广大游戏玩家喜爱.频率低,但可以超频(会影响寿命,)功耗低,比I省电.AMD的处理器有着相对较低的流水线,运算错误率较低,运行大的游戏(不太依赖CPU二级缓存,即对浮点运算要求不高)就会有优势,但AMD浮点运算能力相对叫弱,因此,视频转换或连续重复行运算时,INTEL更有优势.
Intel的频率高一些,而且也稳定些,所以办公、作图象、工程设计或者是软件开发都爱用.另外,影视用I绝对比A好
你来这里看看
目前INTEL和AMD的CPU的区别之处,以及由于区别之处所带来的性能和效率的差异有以下简要几点,仅供参考:
1。从单晶硅工艺上:INTEL:0。09(降低成本,加大晶体管数量),AMD:0。13(成本比0。09的高),所以导致在都降低相同比例的价格后,INTEL还是挣钱,而AMD最起码不会挣太多的钱啦,搞不好还会陪钱(亏损),虽然市场占有率有所提高,尽而导致最近的AMD诉讼案的发生
2。从流水线上:INTEL:31级(可以提升到更高的主频,但带来更大的发热量:例如P4-670超到7。4G,但得用液氮来散热,而且容易造成指令执行效率低下,所以搞出个超线程来弥补);AMD:20级(指令执行的效率比31级强,但频率提升有限而发热量相对要低,效率和频率是2个不同的发展方向,主要看使用者的选择了)
3。缓存:INTEL:1级16K,2级1M-2M(整数运算以及游戏性能没有AMD的快(还有一个主要原因在起作用,后面再讲),但对于网络和多媒体(浮点运算)的应用比对手强
AMD:1级128K,2级:512K(整数运算快,游戏性能好,但对于多媒体的应用稍微逊色)
4。内存管理架够:INTEL的内存管理架够还是采用传统的由主板上的南北桥方式来管理(造成CPU与内存之间的数据传输延时大,对于游戏执行效果没有AMD的好,但对于日后升级成本有所降低)AMD是CPU内部集成内存控制器(减少了CPU与内存数据传输的延时,(对于游戏性能的提升有相当大的作用,也是前面所说的主要原因,同时也弥补了2级只有512K的所对多媒体应用的不足,但加大了对日后升级的成本的增加:要升级的话您只好把CPU和内存以及主板全都换掉)
5。指令集 INTEL:MMX,SSE,SSE2,SSE3,EM64T
(大多数游戏以及软件基于INTEL的指令,对于INTEL有所优化,但64位指令对于现在新的64位系统有兼容性的缺点,所以最近不得不兼容于AMD的X86-64指令,CPU的步进值也从E0变到G1)AMD:3DNOW+,MMX,SSE,SSE2,SSE3,X86-64(在所支持的SSE3中少了2条指令,但问题不大,因为那2条是专门针对INTEL超线程技术的,没有也罢,反正AMD也不支持超线程技术,由于AMD的64位技术源于DEC公司的Alpha技术(64位技术之一),再加上AMD自己的2次开发,所以导致64位技术快速的在民用市场的出现,微软64位系统也不得不基于AMD的X86-64位开发(谁叫AMD先推出民用的64位呢),为了尽快消除对于64位的WINDOWS兼容性的问题,INTEL也被迫开始兼容AMD的64位指令(不是INTEL没有技术开发64位,是由于它的市场策略导致其非常被动,错过了推出64位的最佳时机,让AMD就64位而言站了上风,谁让这2家公司最终还得看微软的脸色呢,从这点上讲,他们还没完全达到市场垄断的地位---硬件厂商还得看软件巨头的脸色,真悲哀!)
综上所诉:现在谁的性价比更高是要看使用者的应用范围(也必然由应用范围来决定),而并不是简单的由价格来决定的,我更不同意所谓的穷人才用AMD的说法(我哥们现在的个人资产有500多万,算是有点钱的吧?!可他装的电脑用的AMD的3000+,为什么呢,因为他不是电脑发烧友,对电脑的知识也不是太懂,他个人认为够用就好,但也得跟的上点潮流,如果他是个发烧友的话去买INTEL的XEON或者AMD的OpteronCPU也很难说的哦,由于INTEL感觉来自AMD的压力所以公司在发展战略上做出了重大的决策的改变(从一味追求频率到追求性能的转变,也不得不放弃由INTEL公司自己创造出来的摩尔定律这个神话,全面转向CPU性能的提升,CPU在3。8G这个频率上画上了个小小的句号,让10G的目标成为了泡影;具可靠的消息:INTEL以后的CPU架够将是基于现在移动CPU的技术上,并且提出了性耗比的概念(而非性价比)并且近期已经成功研发出样品,就性能而言将是现在P4的3倍--5倍,而功耗从笔记本的CPU的5W到台式机CPU的35W到服务器CPU的65W,核心将是双核心或者是4核心,前端总线为:533MHZ,667MHZ,800MHZ,1066MHZ;不再有超线程技术(因为没有必要了,超线程技术的出现主要是来弥补由于流水线过长而导致的效率低下,新的INTEL的CPU不会再用31级流水线,可能只有不到20级或者更底),频率不会超过现有的频率(这意味着3。8G将是INTEL现在乃至以后最高频率)在即将到来的2007年的大较量(INTEL和AMD)中将一决高下,到时候谁胜谁负,谁好谁坏,谁的性价比或者性毫比更高将一目了然,说实话有点为AMD担心(AMD近期曾表示不会对现有的CPU架够改变)但更为咱们中国人自己的龙芯着急!我还是相信那句话:时间会说明一切的!谁将是消费者最应该期待的产品呢?相信在不远的时间里将会出现!
对AMD来说,其最受人欢迎的地方,就是它良好的超频性能和低廉的价格,这是它目前占有处理器市场份额的根本原因,也是它的优势。在我们选择时,如果是DIY高手,那选择AMD是肯定没错,能花较少的钱获得更好的性能,价格上同主频的AMD与Intel,前者价格只是后者的一半左右,而且现在AMD的处理器的主板大多数都有傻瓜超频的软件,虽然不能把超频发挥到极限,但也能过一下超频的瘾。而AMD的发热问题一直是大家最关心的问题,其实不然,现在AMD的处理器多加入了过热保护的芯片,所以发热问题已经基本上得到了解决,不必顾虑。
在购买AMD的产品时要注意,由于它良好的超频性能,使一些奸商们开始出售低频版本超频后再打磨的产品,如何识别是不是打磨过的产品,最简单的办法就是看处理器的L2和L3金桥有没有人为切割或焊接的痕迹。如果仍不放心,那么盒装三年质保的AMD产品也是不错的选择。其次就是风扇的选择,AMD处理器超频后的发热问题(注:超频后发热与不超频时发热不同),一直是DIYer们最关心的,所以选择一个好的风扇也是至关重要的。
Intel则向来以稳定著称,对多媒体有较好的指令支持,比较适合一些多媒体爱好者、办公室装机、以及一些不太懂电脑的家庭装机。从超频上来看,由于所有Intel处理器都是锁倍频的,所以在超频上显不出多大优势来,虽然锁了倍频,但也还是能超,只是超频的范围较小,笔者在不改电压的情况下,将一块P4 2.4 BG的超到了3.0G,且在一些3D游戏中如FIFA 2004时能稳定运行,所以Intel的稳定性还是值得我们信耐的。价格上来说,Intel的处理器比起AMD来说可算是高高在上,虽然IT行业里一分钱一分货,但也不乏有一定的垄断因素在里面,但是它优异稳定的性能,使得不少电脑爱好者在装机时,仍然将其设为首选。也正是因为它的稳定,所以许多品牌电脑大多采用了Intel的处理器,可见Intel的稳定性非同一般。这样,在一个不太懂电脑的家庭装机和商用装机机,Intel的处理器有着不可代替的地位。够买Intel的处理器时,由于都锁了倍频,无论是散装还是盒装都可以放心购买,不会出现像AMD那样的打磨产品。但要特别注意的就是在购买盒装产品时,一些奸商往往用散装处理器配上假冒Intel风扇,重新包装后来当盒装产品销售,鉴别的方法单从外观上很难辨别,主要就是看里面的硬塑料包装是否有拆开过的痕迹,再看说明书是印刷品还是复印的,假冒的一般都是复印品。还有就是可以看盒装产品里面赠送的小徽标(就是品牌机外面都贴着印有的Intel Inside的小贴片),真品的小徽标厚而硬,外面有一层较硬的塑料,假货则比较薄,用手指也能把上面的图案刮下来,有的假货甚至没有小徽标。现在散装的Intel处理器与盒装的价格相差不到几十块,而且盒装产品还赠送一个原装风扇,不必在单独购买风扇,所以购买盒装产品是个不错的选择
AMD与Intel的产品线概述
AMD目前的主流产品线按接口类型可以分成两类,分别是基于Socket 754接口的中低端产品线和基于Socket 939接口的中高端产品线;而按处理器的品牌又分为Sempron、Athlon 64、Opteron系列,此外还有双核的Athlon 64 X2系列,其中Sempron属于低端产品线,Athlon 64,Opteron和Athlon 64 X2属于中高端产品线。这样看来,AMD家族同一品牌的处理器除了接口类型不同之外,同时还存在着多种不同的核心,这给消费者带来了不小的麻烦。可以说AMD现在的产品线是十分混乱的。与AMD复杂的产品线相比,Intel的产品线可以说是相当清晰的。Intel目前主流的处理器都采用LGA 775接口,按市场定位可以分成低端的Celeron D系列、中端的Pentium 4 5xx系列和高端的Pentium 4 6xx系列、双核的Pentium D系列。除了Pentium D处理器以外,其他目前在市面上销售的处理器都是基于Prescott核心,主要以频率和二级缓存的不同来划分档次,这给了消费者一个相当清晰的印象,便于选择购买。(鉴于目前市场上销售的CPU产品都已经全面走向64位,32位的CPU无论在性能或者价格上都不占优势,因此我们所列举的CPU并不包括32位的产品。同样道理,AMD平台的Socket A接口和Intel的Socket 478接口的产品都已经在两家公司的停产列表之上,而AMD的Athlon 64 FX系列和Intel的Pentium XE/EE系列以及服务器领域的产品也不容易在市面上购买到,因此也不在本文谈论范围之内。)
2. AMD与Intel产品线对比
双核处理器可以说是2005年CPU领域最大的亮点。毕竟X86处理器发展到了今天,在传统的通过增加分支预测单元、缓存的容量、提升频率来增加性能之路似乎已经难以行通了。因此,当单核处理器似乎走到尽头之际, Intel、AMD都不约而同地推出了自家的双核处理器解决方案:Pentium D、Athlon 64 X2!
所谓双核处理器,简单地说就是在一块CPU基板上集成两个处理器核心,并通过并行总线将各处理器核心连接起来。双核其实并不是一个全新概念,而只是CMP(Chip Multi Processors,单芯片多处理器)中最基本、最简单、最容易实现的一种类型。
处理器协作机制:
AMD Athlon 64 X2
Athlon 64 X2其实是由Athlon 64演变而来的,具有两个Athlon 64核心,采用了独立缓存的设计,两颗核心同时拥有各自独立的缓存资源,而且通过“System Request Interface”(系统请求接口,简称SRI)使Athlon 64 X2两个核心的协作更加紧密。SRI单元拥有连接到两个二级缓存的高速总线,如果两个核心的缓存数据需要同步,只须通过SRI单元完成即可。这样子的设计不但可以使CPU的资源开销变小,而且有效的利用了内存总线资源,不必占用内存总线资源。
Pentium D
与Athlon 64 X2一样,Pentium D两个核心的二级高速缓存是相互隔绝的,不过并没有专门设计协作的接口,而只是在前端总线部分简单的合并在一起,这种设计的不足之处就在于需要消耗大量的CPU周期。即当一个核心的缓存数据更改之后,必须将数据通过前端总线发送到北桥芯片,接着再由北桥芯片发往内存,而另外一个核心再通过北桥读取该数据,也就是说,Pentium D并不能像Athlon 64 X2一样,在CPU内部进行数据同步,而是需要通过访问内存来进行同步,这样子就比Athlon 64 X2多消耗了一些时间。
二级缓存对比:
二级缓存对于CPU的处理能力影响不小,这一点可以从同一家公司的产品线上的高低端产品当中明显的体现出来。二级缓存做为一个数据的缓冲区,其大小具有相当重大的意义,越大的缓存也就意味着所能容纳的数据量越多,这就大大地减轻了由于总线与内存的速度无法配合CPU的处理速度,而浪费了CPU的资源。
事实上也证明了,较大的高速缓存意味着可以一次交换更多的可用数据,而且还可以大大降低高速缓存失误情况的出现,以及加快数据的访问速度,使整体的性能更高。 就目前而言,AMD的CPU在二级高速缓存的设计上,由于制造工艺的原因,还是比较小,高端的最高也只达到2M,不少中低端产品只有512K,这对于数据的处理多多少少会带来一些不良的影响,特别是处理的数据量较大的时候。Intel则相反,在这方面比较重视,如Pentium D核心内部便集成了2M的二级高速缓存,这在处理数据的时候具有较大的优势,在高端产品中,甚至集成4M的二级高速缓存,可以说是AMD的N倍。在一些实际测试所得出来的数据也表明,二级缓存较大的Intel分数要高于二级缓存较小的AMD不少。
内存架构对比:
由Athlon 64开始,AMD便开始采用将内存控制器集成于CPU内核当中的设计,这种设计的好处在于,可以缩短CPU与内存之间的数据交换周期,以前都是采用内存控制器集成于北桥芯片组的设计,改成集成于CPU核心当中,这样一来CPU无需通过北桥,直接可以对内存进行访问操作,在有效的提高了处理效率的同时,还减轻了北桥芯片的设计难度,使主板厂商节约了成本。不过这种设计在提高了性能的同时,也带来了一些麻烦,一个是兼容性问题,由于内存控制器集成于核心之内,不像内置于北桥芯片内部,兼容性较差,这就给用户在选购内存的时候带来一些不必要的麻烦。
除了内存兼容性较差之外,由于采用核心集成内存控制器的缘故,对于内存种类的选择也有着很大的制约。就现在的内存市场上来看,很明显已经像DDR2代过渡,而到目前为止Athlon 64所集成的还只是DDR内存控制器,换句话说,现有的Athlon 64不支持DDR2,这不仅对性能起到了制约,对用户选择上了造成了局限性。而Intel的CPU却并不会有这样子的麻烦,只需要北桥集成了相应的内存控制器,就可以轻松的选择使用哪种内存,灵活性增强了不少。
还有一个问题,如若用户采用集成显卡时,AMD的这种设计会影响到集成显卡性能的发挥。目前集成显卡主要是通过动态分配内存做为显存,当采用AMD平台时,集成在北桥芯片当中的显卡核心需要通过CPU才能够对内存操作,相比直接对内存进行操作,延迟要长许多。
平台带宽对比: 随着主流的双核处理器的到来,以及945、955系列主板的支持,Intel的前端总线将提升到1066Mhz,配合上最新的DDR2 667内存,将I/O带宽进一步提升到8.5GB/S,内存带宽也达到了10.66GB/S,相比AMD目前的8.0GB/S(I/O带宽)、6.4GB/S(内存带宽)来说,Intel的要远远高出,在总体性能上要突出一些。
功耗对比: 在功耗方面,Intel依然比较AMD的要稍为高一些,不过,近期的已经有所好转了。Intel自推出了Prescott核心,由于采用0.09微米制程、集成了更多的L2缓存,晶体管更加的细薄,从而导致漏电现象的出现,也就增加了漏电功耗,更多的晶体管数量带来了功耗及热量的上升。为了改进Prescott核心处理器的功耗和发热量的问题,Intel便将以前应用于移动处理器上的EIST(Enhanced Intel Speedstep Technolog)移植到目前的主流Prescott核心CPU上,以保证有效的控制降低功耗及发热量。
而AMD方面则加入了Cool ‘n’ Quiet技术,以降低CPU自身的功耗,其工作原理与Intel的SpeedStep动态调节技术相似,都是通过调节倍频等等来实现降低功耗的效果。
实际上,Intel的CPU功率之所以目前会高于AMD,其主要的原因在于其内部集成的晶体管远远要比AMD的CPU多得多,再加上工作频率上也要比AMD的CPU高出不少,这才会变得功率较大。不过在即将来临的Intel新一代CPU架构Conroe,这个问题将会得到有效的解决。其实Conroe是由目前的Pentium M架构变化而来的,它延续了Pentium M的绝大多数优点,如功耗更加低,在主频较低的情况下已然能够获得较好的性能等等这些。可以看出,未来Intel将把移动平台上的Conroe移植到桌面平台上来,取得统一。
流水线对比: 自踏入P4时代以来,Intel的CPU内部的流水线级要比AMD的高出一些。以前的Northwood和Willamette核心的流水线为20级,相对于当时的PIII或者Athlon XP的10级左右的流水线来说,增长了几乎一倍。而目前市场上采用Proscott核心CPU流水线为31级。很多人会有疑问,为何要加长流水线呢?其实流水线的长短对于主频影响还是相当大的。流水线越长,频率提升潜力越大,若一旦分支预测失败或者缓存不中的话,所耽误的延迟时间越长,为此在Netburst架构中,Intel将8级指令获取/解码的流水线分离出来,而Proscott核心有两个这样的8级流水线,因此严格说起来,Northwood和Willamette核心有28级流水线,而Proscott有39级流水线,是现在Athlon 64(K8)架构流水线的两倍。
相信不少人都知道较长流水线不足之处,不过,是否有了解过较长流水线的优势呢?在NetBurst流水线内部功能中,每时钟周期能够处理三个操作数。这和K7/K8是相同的。理论上,NetBurst架构每时钟执行3指令乘以时钟速度,便是最后的性能,由此可见频率至上论有其理论基础。以此为准来计算性能的话,则K8也非NetBurst对手。不过影响性能的因素有很多,最主要的就是分支预测失败、缓存不中、指令相关性三个方面。
这三个方面的问题每个CPU都会遇到,只是各种解决方法及效果存在着差异而已。而NetBurst天生的长流水线既是它的最大优势,也是它的最大劣势。如果一旦发生分支预测失败或者缓存不中的情况,Prescott核心就会有39个周期的延迟。这要比其他的架构延迟时间多得多。不过由于其工作主频较高,加上较大容量的二级高速缓存在一定程度上弥补了NetBurst架构的不足之处。不过流水线的问题在Intel的新一代CPU架构Conroe得到了较好的解决,这样子以来,大容量的高速缓存,以及较低的流水线,配合双核心设计,使得未来的Intel CPU性能更加优异。
“真假双核”
在双核处理器推广的过程中,我们听到了一些不和谐的音符:AMD宣扬自己的双核Opteron和Athlon-64 X2才符合真正意义上的双核处理器准则,并隐晦地表示Intel双核处理器只是“双芯”,暗示其为“伪双核”,声称自己的才是“真双核”,真假双核在外界引起了争议,也为消费者的选择带来了不便。
AMD认为,它的双核之所以是“真双核”,就在于它并不只是简单地将两个处理器核心集成在一个硅晶片(或称DIE)上,与单核相比,它增添了“系统请求接口”(System Request Interface,SRI)和“交叉开关”(Crossbar Switch)。它们的作用据AMD方面介绍应是对两个核心的任务进行仲裁、及实现核与核之间的通信。它们与集成的内存控制器和HyperTransport总线配合,可让每个核心都有独享的I/O带宽、避免资源争抢,实现更小的内存延迟,并提供了更大的扩展空间,让双核能轻易扩展成为多核。
与自己的“真双核”相对应,AMD把英特尔已发布的双核处理器——奔腾至尊版和奔腾D处理器采用的双核架构称之为“双芯”。AMD称,它们只是将两个完整的处理器核心简单集成在一起,并连接到同一条带宽有限的前端总线上,这种架构必然会导致它们的两个核心争抢总线资源、从而影响性能,而且在英特尔这种双核架构上很难添加更多处理器核心,因为更多的核心会带来更为激烈的总线带宽争抢。
而根据前面我们提到CMP的概念,笔者认为英特尔和AMD的双核处理器,以及它们未来的多核处理器实际上都属于CMP架构。而对双核处理器的架构或标准,业界并无明确定义,称双核处理器存在“真伪”纯属AMD的一家之言,是一种文字游戏,有误导消费者之嫌。
目前业界对双核处理器的架构并没有共同标准或定义,自然也就没有什么真伪之分。CMP的原意就是在一个处理器上集成多个处理器核心,在这一点上AMD与英特尔并无分别,不能说自己的产品集成了仲裁等功能就是“真双核”,更没有理由称别人的产品是“双芯”或“伪双核”。此外在不久前AMD举办的“我为双核狂”的活动中,有不少玩家指出,AMD的双核处理器在面对多任务环境下,无法合理分配CPU运算资源,导致运行同样的程序却会得到不同的时间,AMD的双核并不稳定。从不少媒体的评测还可以看到,AMD的双核在单程序运行的效率要高于Intel处理器,但是在多任务的测试中则全面落后!
由此可见,对于真假双核之说,笔者认为只是一种市场的抄作,并不是一种客观的性能表现。从真正的双核应用上来看(双核的发展主要是由于各种程序的同时运行,即多程序同时运行的要求),Intel的双核更符合多程序的发展需求。
现在主板上面主要集成的芯片有哪些
大半夜的了,我就和你慢慢说吧。
主板不支持最新处理器你这个机子用的是H61M芯片组的主板,这个主板支持第二代i3/i5/i7处理器(Ivy Bridge),而现在已经出了第六代Skylake处理器了,你的主板不能支持最新的处理器。
内存不支持DDR4你的主板最高支持到1600Mhz频率的DDR3内存,而今年第三季度起,DDR4内存已经全面铺货,你的主板不受支持。
显卡性能受限你的主板是入门级别的,最新的显卡,如英伟达GTX960,虽然可以支持,但是好卡配渣板,限制性能发挥,你的处理器也无法发挥出显卡性能。
不建议“慢慢更换”综合来说,机器的三大配件,显卡内存处理器,都已经无法跟上主流,所以不建议“慢慢更换”,因为没什么意义。
想做个嵌入式Linux板子玩玩,推荐用什么芯片?
一、主板芯片组:
芯片组(Chipset)是主板的核心组成部分,联系CPU和其他周边设备的运作。主板上最重要的芯组就是南桥和北桥。
1、北桥芯片:(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Host Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔875P芯片组的北桥芯片是82875P、最新的则是支持双核心处理器的945/955/975系列的82945P、82945G、82945GZ、82945GT、82945PL、82955X、82975X等七款北桥芯片等等。
北桥作用:北桥芯片负责与CPU的联系并控制内存(仅限于Intel的cpu,AMD系列cpu在K8系列以后就在cpu中集成了内存控制器,因此AMD平台的北桥芯片不控制内存)、AGP数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。
北桥识别及特点:北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。
2、南桥芯片:南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Architecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。
南桥作用:南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1的440LX其南桥芯片都采用82317AB,而近两年的芯片组845E/845G/845GE/845PE等配置都采用ICH4南桥芯片,但也能搭配ICH2南桥芯片。更有甚者,有些主板厂家生产的少数产品采用的南北桥是不同芯片组公司的产品,例如以前升技的KG7-RAID主板,北桥采用了AMD 760,南桥则是VIA 686B。南桥芯片的发展方向主要是集成更多的功能,例如网卡、RAID、IEEE 1394、甚至WI-FI无线网络等等。二、主板上其它芯片识别
1、电源管理芯片
电源管理芯片又称电源IC,又叫脉宽调制芯片(PWM),主板用的叫:可编程脉宽调制芯片,主要负责控制CPU的主供电,一般位于CPU插座附近,可看型号识别。
常见型号:
RT系列:RT9238、RT9241…
RC系列:RC5051、RC5057…
LM系列:LM2637、LM2638…
SC系列:SC2643、SC1189…
ISL系列:ISL6524、ISL6556B…
HIP系列:HIP6021、HIP6301…
ADP系列:ADP3168、ADP3418…
AIC系列:AIC1569…
CS系列:CS5165…
2、I/O芯片
I/O芯片主要负责控制软件驱、打印口、键盘鼠标口。
I/O芯片的常见品牌:
Winbond 华邦 TTE 联阳 ALI 杨智 SMSC等。
I/O芯片常见型号:
W83627HF、IT8712F、IT8705F,这三种芯片中集成了监控功能;还有一些集成了电源管理功能(但不能控制主供电)如:W83627F/TF/EF、W83697F、IT8712F、IT8702F、8671F。
注:370主板上南桥为VT82C686A、VT82C686B、VT82C686C,集成了I/O,主板上没有I/O芯片。
3、串口芯片
串口芯片负责控制主板上的串口(COM口)
常见型号:GD75232、GD75185、HT6571、IT8687R,前三种为20针,一个芯片负责管理一个串口;
IT8687R为48针,一个芯片同时管理二个串口。
4、时钟芯片
时钟芯片与14.318晶振连接在一起,是主板上所有设备的时钟信号产生源。
时钟芯片给主板所有设备提供频率,(以时钟晶振的频率为基础,进行频率的叠加和分频,提供给主板的其它设备,PCI、AGP、内存、CPU)。时钟芯片受南桥控制,常见型号ICSXXX,时钟芯片和时钟晶振连在一起。
常见型号:
ICS系列:950213AF、93725AF、950208BF、9248DF-39…
Winbond系列:W83194AR-96、W83194R-39A…
其它系列:W211BH、W144H…
5、声卡芯片
板载声卡一般有软声卡和硬声卡之分。这里的软硬之分,指的是板载声卡是否具有声卡主处理芯,一般软声卡没有主处理芯片,只有一个解码芯片,通过CPU的运算来代替声卡主处理芯片的作用;而板载硬声卡带有主处理芯片,很多音效处理工作不再需要CPU参与了。
常见型号:ALC101、ALC655、VIA1616、CMI9739A、CMI8738等。
6、网卡芯片
主板网卡芯片指整合了网络功能的主板所集成的网卡芯片,与之相对应,在主板的背板上也有相应的网卡接口(RJ-45)。
常见型号:RTL8100C、VT6103、3COM等。
7、BIOS芯片
BIOS:基本输入输出系统,是只读存储器基本输入输出系统的简写,它实际是一组被固化在电脑中,为电脑提供最低级最直接的硬件控制程序,它是连通软件程序和硬盘设备之间的枢纽。BIOS芯片是主板上一块放型或长方型芯片。
常见型号:
长方型:Winbond W29c020、w29c002…
ATMEL AT49F020、AT49F040…
方 型:Winbond W49F020、W49F002…
SST 29EE020、49LF004…
Intel 80802AB等
8、RAID芯片
RAID,中文简称为谦价磁盘冗余阵列。RAID就是一种由多块硬盘构成的冗余阵列。虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现的。
板载的RAID芯片有HighPoint的HTP372和Promise的PDC20265R,Intel的ICH5R南桥芯片也内置了SATA RAID功能。
9、开机复位芯片
一般华硕主板和微星主板有此芯片
华硕主板芯片型号:AS99127F、AS97127F
微星主板芯片型号:MS-5、2310GE
10、逻辑信号控制芯片
又叫超频保护芯片,型号为Attansic ATXP1, 48针,这块芯片可以控制电压的同还可以分频,同时支持PCI频率锁定。
11、S-ATA 控制芯片
VIA VT6420、Promise PDC20378等。
12、监控芯片
用来监测CPU温度、风扇转速、CPU工作电压等。
常见型号:W83781D、83783D、LM75、LM79、W83601R等。 南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Architecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。
& ~+ m/ b0 g6 W! g: P' |: a3 ~. n' V9 G* f
南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1的440LX其南桥芯片都采用82317AB,而近两年的芯片组Intel945系列芯片组都采用ICH7或者ICH7R南桥芯片,但也能搭配ICH6南桥芯片。更有甚者,有些主板厂家生产的少数产品采用的南北桥是不同芯片组公司的产品。 7 e* n0 j- N6 V, e/ n) N
南桥芯片的发展方向主要是集成更多的功能,例如网卡、RAID、IEEE 1394、甚至WI-FI无线网络等等。 + |" y, e" ^; {2 g# k' _' ]$ n/ |
8 | V7 y% j; t4 }/ N
北桥芯片(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Host Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔 845E芯片组的北桥芯片是82845E,875P芯片组的北桥芯片是82875P等等。北桥芯片负责与CPU的联系并控制内存、AGP数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。
# }, Y1 D8 K7 K6 J* r: j; p1 I8 D
/ ]5 ]) M; a3 X' N由于已经发布的AMD K8核心的CPU将内存控制器集成在了CPU内部,于是支持K8芯片组的北桥芯片变得简化多了,甚至还能采用单芯片芯片组结构。这也许将是一种大趋势,北桥芯片的功能会逐渐单一化,为了简化主板结构、提高主板的集成度,也许以后主流的芯片组很有可能变成南北桥合一的单芯片形式(事实上SIS老早就发布了不少单芯片芯片组)。
选择嵌入式Linux开发板时,通常会考虑处理能力、支持度、社区活跃度和开发环境等因素。以下是一些常见的嵌入式Linux开发板芯片推荐:
1. Raspberry Pi 系列
推荐芯片:Broadcom BCM283x 系列(如Raspberry Pi 4的BCM2711)
优点:成本低廉、社区支持广泛、丰富的周边设备和软件支持、适合教学和个人项目。
适用场景:初学者、教育、小型项目和原型开发。
2. BeagleBone 系列
推荐芯片:Texas Instruments AM335x 系列(如BeagleBone Black的AM3358)
优点:功能丰富、GPIO丰富、适合嵌入式控制应用、开源硬件设计。
适用场景:嵌入式控制、自动化、物联网设备。
3. NVIDIA Jetson 系列
推荐芯片:NVIDIA Tegra 系列(如Jetson Nano的Tegra X1)
优点:强大的图形处理能力、适合机器学习和视觉处理、丰富的软件支持。
适用场景:机器人、AI应用、高性能图像处理。
4. ODROID 系列
推荐芯片:Samsung Exynos 系列(如ODROID-XU4的Exynos 5422)
优点:性能强劲、支持Linux和Android系统、适合需求较高的应用。
适用场景:多媒体、嵌入式开发、高性能计算。
5. Arduino 系列
推荐芯片:ATmega 系列(如Arduino Due的Atmel SAM3X8E)
优点:简单易用、丰富的Arduino社区和库支持、适合初学者和简单的物联网项目。
适用场景:教育、小型传感器网络、嵌入式控制。
6. Orange Pi 系列
推荐芯片:Allwinner H 系列(如Orange Pi PC的H3)
优点:性价比高、适合低成本项目和多媒体应用、社区支持较好。
适用场景:家庭媒体中心、物联网设备、低成本嵌入式开发。
7. UP Board
推荐芯片:Intel Atom 系列(如UP Board的Intel Atom x5-Z8350)
优点:x86架构、性能稳定、广泛的操作系统支持(包括Linux和Windows)。
适用场景:工业控制、嵌入式系统、高性能计算需求。
选择建议:
需求分析:根据项目需求和预算选择合适的芯片和开发板。
开发环境:考虑开发环境和工具链的兼容性。
支持和社区:选择有活跃社区和良好技术支持的开发板,有助于解决开发过程中的问题。
以上推荐基于常见的开发板和芯片组合,具体选择应根据个人或项目的具体需求和偏好进行。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。